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Graphs
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V = {A,B ,C ,D}

E = {(A,B), (C ,D), (C ,A), (B ,C )}
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V = {A,B ,C ,D}
E = {({A,B}, 3), ({A,D}, 1),
({B ,D}, 2), ({C ,D},−1), ({A,C}, 2)}
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Sparse and Dense Graphs
dense graph sparse graph

# edges Θ(|V |2) Θ(|V |)
average degree Θ(|V |) Θ(1)
adj. matrix Θ(|V |2) Θ(|V |2)
adj. list Θ(|V |2) Θ(|V |)
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Explore(v)

{Input: a node v of a graph
G = (V ,E ).}
{Output: visited[u] = true for all

nodes u reachable from v.}
visited[v ]← true
Previsit(v)
for each edge (v , u) ∈ E:

if visited[u] = false:
Explore(u)

Postvisit(v)



Formal Proof
Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

v z w u

Hence Explore was not called for w while
iterating over the neighbors of z ,
a contradiction.
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Depth-First Search
DFS(G )

for all v ∈ V :
visited[v ]← false

for all v ∈ V :
if visited[v ] = false:

Explore(v)

Running time: O(|V | + |E |) since Explore
is called exactly once for each vertex v ∈ V

and each edge is examined either once (for
directed graphs) or twice (for undirected
graphs).
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Connected Components
A connected component of un undirected
graph is an inclusion-wise maximal subset of
vertices such that there is a path between
any two of them.
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Finding Connected Components

Previsit(v)
ccnum[v ]← cc

DFS(G )
cc← 0
for all v ∈ V :

visited[v ]← false
ccnum[v ]← −1

for all v ∈ V :
if visited[v ] = false:

cc← cc+ 1
Explore(v)
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Previsit and Postvisit Orderings

Previsit(v)

pre[v ]← clock
clock← clock + 1

Postvisit(v)

post[v ]← clock
clock← clock + 1



Types of Edges
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Types of edges:
tree edge: (A,C ), (C ,E ),
(C ,F ), (B ,D)

forward edge: (A,F )

cross edge: (B ,C ), (F ,E )

back edge: (E ,A)
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Types of edges

tree/forward edge (u, v):

back edge (u, v):

cross (u, v):

u
v

v
u

v u



Directed acyclic graphs
Lemma
A directed graph has a cycle if and only if its
depth-first search reveals a back edge.

Proof

⇒ If (u, v) is a back edge, then there
is a path from v to u in DFS tree.

⇐ Let u1 → u2 → . . .→ uk → u1 be
a cycle and assume w.l.o.g. that u1

is the first vertex Explore was
called to. Then u2. . . . , uk are
descendants of u1 in DFS tree.
Hence (uk , u1) is a back edge.
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Topological ordering
A topological ordering of a directed graph is
a linear ordering of its vertices such that for
any edge (u, v), u comes before v .
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Lemma
A directed graph can be linearized iff it is a
DAG.

Proof

⇒ If there is a cycle the graph cannot
be linearized.

⇐ Each DAG contains at least one
source (a vertex with no incoming
edges) and at least one sink (no
outgoing edges). This suggests the
following algorithm: find a source,
output it, delete it from the graph,
and repeat.
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Example
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Visualization:
http://www.cs.usfca.edu/~galles/
visualization/TopoSortIndegree.html

http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html
http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html


Lemma
In a DAG every edge leads to a vertex with a
lower post number.

Proof
If post[v ] > post[u] for an edge (u, v) then
(u, v) is a back edge.

tree/forward edge (u, v):

back edge (u, v):

cross (u, v):

u
v

v
u

v u
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