
Decomposition of Graphs:
Depth First Search

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Graphs

A B

C D

V = {A,B ,C ,D}

E = {(A,B), (C ,D), (C ,A), (B ,C)}

A B

C D

3

2
1

−1
2

V = {A,B ,C ,D}
E = {({A,B}, 3), ({A,D}, 1),
({B ,D}, 2), ({C ,D},−1), ({A,C}, 2)}

Ways to Represent
edge
list

adjacency
matrix

adjacency
list

A,B B,C A,C
A B C

A 0 1 1
B 0 0 1
C 0 0 0

A B C

B C

C

A

B C

space

(u, v) ∈ E?

neighbors of u

Θ(|E |)

Θ(|E |)

Θ(|E |)

Θ(|V |2)

Θ(1)

Θ(|V |)

Θ(|V |+ |E |)

deg(u)

deg(u)

Ways to Represent
edge
list

adjacency
matrix

adjacency
list

A,B B,C A,C
A B C

A 0 1 1
B 0 0 1
C 0 0 0

A B C

B C

C

A

B C

space

(u, v) ∈ E?

neighbors of u

Θ(|E |)

Θ(|E |)

Θ(|E |)

Θ(|V |2)

Θ(1)

Θ(|V |)

Θ(|V |+ |E |)

deg(u)

deg(u)

Sparse and Dense Graphs
dense graph sparse graph

edges Θ(|V |2) Θ(|V |)
average degree Θ(|V |) Θ(1)
adj. matrix Θ(|V |2) Θ(|V |2)
adj. list Θ(|V |2) Θ(|V |)

Sparse and Dense Graphs
dense graph sparse graph

edges Θ(|V |2) Θ(|V |)
average degree Θ(|V |) Θ(1)
adj. matrix Θ(|V |2) Θ(|V |2)
adj. list Θ(|V |2) Θ(|V |)

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Explore(v)

{Input: a node v of a graph
G = (V ,E).}
{Output: visited[u] = true for all

nodes u reachable from v.}
visited[v]← true
Previsit(v)
for each edge (v , u) ∈ E:

if visited[u] = false:
Explore(u)

Postvisit(v)

Formal Proof
Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

v z w u

Hence Explore was not called for w while
iterating over the neighbors of z ,
a contradiction.

Formal Proof
Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

v z w u

Hence Explore was not called for w while
iterating over the neighbors of z ,
a contradiction.

Formal Proof
Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

v z w u

Hence Explore was not called for w while
iterating over the neighbors of z ,
a contradiction.

Formal Proof
Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

v z w u

Hence Explore was not called for w while
iterating over the neighbors of z ,
a contradiction.

Depth-First Search
DFS(G)

for all v ∈ V :
visited[v]← false

for all v ∈ V :
if visited[v] = false:

Explore(v)

Running time: O(|V | + |E |) since Explore
is called exactly once for each vertex v ∈ V

and each edge is examined either once (for
directed graphs) or twice (for undirected
graphs).

Depth-First Search
DFS(G)

for all v ∈ V :
visited[v]← false

for all v ∈ V :
if visited[v] = false:

Explore(v)

Running time: O(|V | + |E |) since Explore
is called exactly once for each vertex v ∈ V

and each edge is examined either once (for
directed graphs) or twice (for undirected
graphs).

Connected Components
A connected component of un undirected
graph is an inclusion-wise maximal subset of
vertices such that there is a path between
any two of them.

D

B

E

F

A

G

C

Connected Components
A connected component of un undirected
graph is an inclusion-wise maximal subset of
vertices such that there is a path between
any two of them.

D

B

E

F

A

G

C

Finding Connected Components

Previsit(v)
ccnum[v]← cc

DFS(G)
cc← 0
for all v ∈ V :

visited[v]← false
ccnum[v]← −1

for all v ∈ V :
if visited[v] = false:

cc← cc+ 1
Explore(v)

Outline

1 Graphs

2 Depth First Search in Undirected Graphs

3 Depth-First Search in Directed Graphs

Previsit and Postvisit Orderings

Previsit(v)

pre[v]← clock
clock← clock + 1

Postvisit(v)

post[v]← clock
clock← clock + 1

Types of Edges

A1,8

B
9,12

C
2,7

D 10,11

E
3,4

F
5,6

Types of edges:
tree edge: (A,C), (C ,E),
(C ,F), (B ,D)

forward edge: (A,F)

cross edge: (B ,C), (F ,E)

back edge: (E ,A)

A

C

E F

B

D

1 2 3 4 5 6 7 8 9 10 11 12

A B
C

E F
D

Types of Edges

A1,8

B
9,12

C
2,7

D 10,11

E
3,4

F
5,6

Types of edges:
tree edge: (A,C), (C ,E),
(C ,F), (B ,D)

forward edge: (A,F)

cross edge: (B ,C), (F ,E)

back edge: (E ,A)

A

C

E F

B

D

1 2 3 4 5 6 7 8 9 10 11 12

A B
C

E F
D

Types of edges

tree/forward edge (u, v):

back edge (u, v):

cross (u, v):

u
v

v
u

v u

Directed acyclic graphs
Lemma
A directed graph has a cycle if and only if its
depth-first search reveals a back edge.

Proof

⇒ If (u, v) is a back edge, then there
is a path from v to u in DFS tree.

⇐ Let u1 → u2 → . . .→ uk → u1 be
a cycle and assume w.l.o.g. that u1

is the first vertex Explore was
called to. Then u2. . . . , uk are
descendants of u1 in DFS tree.
Hence (uk , u1) is a back edge.

Directed acyclic graphs
Lemma
A directed graph has a cycle if and only if its
depth-first search reveals a back edge.

Proof

⇒ If (u, v) is a back edge, then there
is a path from v to u in DFS tree.

⇐ Let u1 → u2 → . . .→ uk → u1 be
a cycle and assume w.l.o.g. that u1

is the first vertex Explore was
called to. Then u2. . . . , uk are
descendants of u1 in DFS tree.
Hence (uk , u1) is a back edge.

Topological ordering
A topological ordering of a directed graph is
a linear ordering of its vertices such that for
any edge (u, v), u comes before v .

D D

A

A

B

BF F

C

C

E

E

Lemma
A directed graph can be linearized iff it is a
DAG.

Proof

⇒ If there is a cycle the graph cannot
be linearized.

⇐ Each DAG contains at least one
source (a vertex with no incoming
edges) and at least one sink (no
outgoing edges). This suggests the
following algorithm: find a source,
output it, delete it from the graph,
and repeat.

Lemma
A directed graph can be linearized iff it is a
DAG.

Proof

⇒ If there is a cycle the graph cannot
be linearized.

⇐ Each DAG contains at least one
source (a vertex with no incoming
edges) and at least one sink (no
outgoing edges). This suggests the
following algorithm: find a source,
output it, delete it from the graph,
and repeat.

Example

D D

A

A

B

BF F

C

C

E

E

Visualization:
http://www.cs.usfca.edu/~galles/
visualization/TopoSortIndegree.html

http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html
http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html

Lemma
In a DAG every edge leads to a vertex with a
lower post number.

Proof
If post[v] > post[u] for an edge (u, v) then
(u, v) is a back edge.

tree/forward edge (u, v):

back edge (u, v):

cross (u, v):

u
v

v
u

v u

Example

D4,5

A
1,12

B
3,6

F 9,10

C
2,7

E
8,11

	Graphs
	Depth First Search in Undirected Graphs
	Depth-First Search in Directed Graphs

